Lane-Level Short-Term Freeway Traffic Volume Prediction Based on Graph Convolutional Recurrent Network

Author:

Liu Lu1,Cui Zhiyong2ORCID,Ke Ruimin3,Wang Yinhai4ORCID

Affiliation:

1. Research Assistant, Automotive Transportation Technology Research Center, Research Institute of Highway Ministry of Transport, Beijing 100088, China.

2. Professor, School of Transportation Science and Engineering, Beihang Univ., Beijing 100191, China (corresponding author). ORCID: .

3. Assistant Professor, Dept. of Civil Engineering, Univ. of Texas at El Paso, El Paso, TX 79968.

4. Professor, Dept. of Civil and Environmental Engineering, Univ. of Washington, Seattle, WA 98105. ORCID: .

Publisher

American Society of Civil Engineers (ASCE)

Subject

Transportation,Civil and Structural Engineering

Reference25 articles.

1. Unobserved Component Model for Predicting Monthly Traffic Volume

2. A novel reinforced dynamic graph convolutional network model with data imputation for network-wide traffic flow prediction;Chen Y.;Transp. Res. Part C Emerging Technol.,2022

3. Cui Z. M. Zhu S. Wang P. Wang Y. Zhou Q. Cao C. Kopca and Y. Wang. 2020. “Traffic performance score for measuring the impact of COVID-19 on urban mobility.” Preprint submitted July 10 2020. http://arxiv.org/abs/2007.00648.

4. Framewise phoneme classification with bidirectional LSTM and other neural network architectures

5. Short-term prediction of lane-level traffic speeds: A fusion deep learning model;Gu Y.;Transp. Res. Part C Emerging Technol.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3