Many Languages, One Parser

Author:

Ammar Waleed1,Mulcaire George2,Ballesteros Miguel34,Dyer Chris1,Smith Noah A.2

Affiliation:

1. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA,

2. Computer Science & Engineering, University of Washington, Seattle, WA, USA,

3. NLP Group, Pompeu Fabra University, Barcelona, Spain

4. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA,

Abstract

We train one multilingual model for dependency parsing and use it to parse sentences in several languages. The parsing model uses (i) multilingual word clusters and embeddings; (ii) token-level language information; and (iii) language-specific features (fine-grained POS tags). This input representation enables the parser not only to parse effectively in multiple languages, but also to generalize across languages based on linguistic universals and typological similarities, making it more effective to learn from limited annotations. Our parser’s performance compares favorably to strong baselines in a range of data scenarios, including when the target language has a large treebank, a small treebank, or no treebank for training.

Publisher

MIT Press - Journals

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cross-lingual dependency parsing for a language with a unique script;Natural Language Processing;2024-09-09

2. Language relatedness evaluation for multilingual neural machine translation;Neurocomputing;2024-02

3. Cross-Lingual Universal Dependency Parsing Only From One Monolingual Treebank;IEEE Transactions on Pattern Analysis and Machine Intelligence;2023-11-01

4. Building Dialogue Understanding Models for Low-resource Language Indonesian from Scratch;ACM Transactions on Asian and Low-Resource Language Information Processing;2023-04-06

5. Curriculum-Style Fine-Grained Adaption for Unsupervised Cross-Lingual Dependency Transfer;IEEE/ACM Transactions on Audio, Speech, and Language Processing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3