Segmentation-Free Streaming Machine Translation

Author:

Iranzo-Sánchez Javier1,Iranzo-Sánchez Jorge2,Giménez Adrià3,Civera Jorge4,Juan Alfons5

Affiliation:

1. Machine Learning and Language Processing, VRAIN, Universitat Politècnica de València, Spain. jairsan@upv.es

2. Machine Learning and Language Processing, VRAIN, Universitat Politècnica de València, Spain. jorirsan@upv.es

3. Departament d’Informàtica, Escola Tècnica Superior d’Enginyeria, Universitat de València, Spain. adria.gimenez@uv.es

4. Machine Learning and Language Processing, VRAIN, Universitat Politècnica de València, Spain. jorcisai@upv.es

5. Machine Learning and Language Processing, VRAIN, Universitat Politècnica de València, Spain. ajuanci@upv.es

Abstract

Abstract Streaming Machine Translation (MT) is the task of translating an unbounded input text stream in real-time. The traditional cascade approach, which combines an Automatic Speech Recognition (ASR) and an MT system, relies on an intermediate segmentation step which splits the transcription stream into sentence-like units. However, the incorporation of a hard segmentation constrains the MT system and is a source of errors. This paper proposes a Segmentation-Free framework that enables the model to translate an unsegmented source stream by delaying the segmentation decision until after the translation has been generated. Extensive experiments show how the proposed Segmentation-Free framework has better quality-latency trade-off than competing approaches that use an independent segmentation model.1

Publisher

MIT Press

Reference48 articles.

1. Contextual handling in neural machine translation: Look behind, ahead and on both sides;Agrawal,2018

2. Findings of the IWSLT 2022 evaluation campaign;Anastasopoulos,2022

3. Re-translation strategies for long form, simultaneous, spoken language translation;Arivazhagan,2020

4. Monotonic infinite lookback attention for simultaneous machine translation;Arivazhagan,2019

5. Re-translation versus streaming for simultaneous translation;Arivazhagan,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3