Understanding and Detecting Hallucinations in Neural Machine Translation via Model Introspection

Author:

Xu Weijia1,Agrawal Sweta2,Briakou Eleftheria3,Martindale Marianna J.4,Carpuat Marine5

Affiliation:

1. Microsoft Research, Redmond, USA. weijiaxu@microsoft.com

2. University of Maryland, USA. sweagraw@cs.umd.edu

3. University of Maryland, USA. ebriakou@cs.umd.edu

4. University of Maryland, USA. mmartind@umd.edu

5. University of Maryland, USA. marine@cs.umd.edu

Abstract

AbstractNeural sequence generation models are known to “hallucinate”, by producing outputs that are unrelated to the source text. These hallucinations are potentially harmful, yet it remains unclear in what conditions they arise and how to mitigate their impact. In this work, we first identify internal model symptoms of hallucinations by analyzing the relative token contributions to the generation in contrastive hallucinated vs. non-hallucinated outputs generated via source perturbations. We then show that these symptoms are reliable indicators of natural hallucinations, by using them to design a lightweight hallucination detector which outperforms both model-free baselines and strong classifiers based on quality estimation or large pre-trained models on manually annotated English-Chinese and German-English translation test beds.

Publisher

MIT Press

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Reference70 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On compositional generalization of transformer-based neural machine translation;Information Fusion;2024-11

2. Towards trustworthy LLMs: a review on debiasing and dehallucinating in large language models;Artificial Intelligence Review;2024-08-10

3. Calibrated Language Models Must Hallucinate;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

4. Intelligent Detection System Based on Recurrent Neural Network Machine Translation for Typical Errors in English Translation;2024 Second International Conference on Data Science and Information System (ICDSIS);2024-05-17

5. Non-Fluent Synthetic Target-Language Data Improve Neural Machine Translation;IEEE Transactions on Pattern Analysis and Machine Intelligence;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3