Addressing the Binning Problem in Calibration Assessment through Scalar Annotations

Author:

Jiang Zhengping1,Liu Anqi2,Durme Benjamnin Van3

Affiliation:

1. Johns Hopkins University, USA. zjiang31@jhu.edu

2. Johns Hopkins University, USA. aliu@cs.jhu.edu

3. Johns Hopkins University, USA. vandurme@jhu.edu

Abstract

Abstract Computational linguistics models commonly target the prediction of discrete—categorical—labels. When assessing how well-calibrated these model predictions are, popular evaluation schemes require practitioners to manually determine a binning scheme: grouping labels into bins to approximate true label posterior. The problem is that these metrics are sensitive to binning decisions. We consider two solutions to the binning problem that apply at the stage of data annotation: collecting either distributed (redundant) labels or direct scalar value assignment. In this paper, we show that although both approaches address the binning problem by evaluating instance-level calibration, direct scalar assignment is significantly more cost-effective. We provide theoretical analysis and empirical evidence to support our proposal for dataset creators to adopt scalar annotation protocols to enable a higher-quality assessment of model calibration.

Publisher

MIT Press

Reference52 articles.

1. Stop measuring calibration when humans disagree;Baan,2022

2. GPT-Neo: Large scale autoregressive language modeling with mesh-tensorflow;Black,2021

3. Language models are few-shot learners;Brown;Advances in Neural Information Processing Systems,2020

4. Beyond likert ratings: Improving the robustness of developmental research measurement using best–worst scaling;Burton;Behavior Research Methods,2021

5. Evaluating large language models trained on code;Chen;arXiv preprint arXiv:2107.03374,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3