T3L: Translate-and-Test Transfer Learning for Cross-Lingual Text Classification

Author:

Unanue Inigo Jauregi12,Haffari Gholamreza3,Piccardi Massimo4

Affiliation:

1. RoZetta Technology, Australia. inigo.jauregi@rozettatechnology.com

2. University of Technology Sydney, Australia

3. Monash University, Australia. gholamreza.haffari@monash.edu

4. University of Technology Sydney, Australia. massimo.piccardi@uts.edu.au

Abstract

Abstract Cross-lingual text classification leverages text classifiers trained in a high-resource language to perform text classification in other languages with no or minimal fine-tuning (zero/ few-shots cross-lingual transfer). Nowadays, cross-lingual text classifiers are typically built on large-scale, multilingual language models (LMs) pretrained on a variety of languages of interest. However, the performance of these models varies significantly across languages and classification tasks, suggesting that the superposition of the language modelling and classification tasks is not always effective. For this reason, in this paper we propose revisiting the classic “translate-and-test” pipeline to neatly separate the translation and classification stages. The proposed approach couples 1) a neural machine translator translating from the targeted language to a high-resource language, with 2) a text classifier trained in the high-resource language, but the neural machine translator generates “soft” translations to permit end-to-end backpropagation during fine-tuning of the pipeline. Extensive experiments have been carried out over three cross-lingual text classification datasets (XNLI, MLDoc, and MultiEURLEX), with the results showing that the proposed approach has significantly improved performance over a competitive baseline.

Publisher

MIT Press

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3