Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets

Author:

Kreutzer Julia12,Caswell Isaac3,Wang Lisa34,Wahab Ahsan56,van Esch Daan7,Ulzii-Orshikh Nasanbayar8,Tapo Allahsera910,Subramani Nishant211,Sokolov Artem4,Sikasote Claytone1213,Setyawan Monang14,Sarin Supheakmungkol14,Samb Sokhar1516,Sagot Benoît17,Rivera Clara18,Rios Annette19,Papadimitriou Isabel20,Osei Salomey2122,Suarez Pedro Ortiz1723,Orife Iroro224,Ogueji Kelechi225,Rubungo Andre Niyongabo2627,Nguyen Toan Q.28,Müller Mathias19,Müller André19,Muhammad Shamsuddeen Hassan2930,Muhammad Nanda30,Mnyakeni Ayanda31,Mirzakhalov Jamshidbek56,Matangira Tapiwanashe32,Leong Colin2,Lawson Nze14,Kudugunta Sneha3,Jernite Yacine233,Jenny Mathias19,Firat Orhan35,Dossou Bonaventure F. P.3435,Dlamini Sakhile14,de Silva Nisansa36,Çabuk Ballı Sakine19,Biderman Stella37,Battisti Alessia19,Baruwa Ahmed238,Bapna Ankur3,Baljekar Pallavi1,Azime Israel Abebe3940,Awokoya Ayodele2941,Ataman Duygu1942,Ahia Orevaoghene243,Ahia Oghenefego14,Agrawal Sweta44,Adeyemi Mofetoluwa2945

Affiliation:

1. Google Research, Canada

2. Masakhane NLP, USA

3. Google Research, USA

4. Google Research, Germany

5. Turkic Interlingua

6. University of South Florida, USA

7. Google Research, The Netherlands

8. Haverford College, USA

9. Masakhane NLP, Mali

10. RobotsMali, Mali

11. Allen Institute for Artificial Intelligence, USA

12. Masakhane NLP, Zambia

13. University of Zambia, Zambia

14. Google, USA

15. Masakhane NLP, Senegal

16. AIMS-AMMI, Senegal

17. Inria, France

18. Google Research, UK

19. University of Zurich, Switzerland

20. Stanford University, USA

21. Masakhane NLP, Ghana

22. Kwame Nkrumah University of Science and Technology, Ghana

23. Sorbonne Université, France

24. Niger-Volta LTI, USA

25. University of Waterloo, Canada

26. Masakhane NLP, Spain

27. Universitat Politècnica de Catalunya, Spain

28. University of Notre Dame, USA

29. Masakhane NLP, Nigeria

30. Bayero University Kano, Nigeria

31. Google, South Africa

32. Google, Canada

33. Hugging Face, USA

34. Masakhane NLP, Germany

35. Jacobs University Bremen, Germany

36. University of Moratuwa, Sri Lanka

37. EleutherAI, USA

38. Obafemi Awolowo University, Nigeria

39. Masakhane NLP, Ethiopia

40. AIMS-AMMI, Ethiopia

41. University of Ibadan, Nigeria

42. Turkic Interlingua, Switzerland

43. Instadeep, Nigeria

44. University of Maryland, USA

45. Defence Space Administration Abuja, Nigeria

Abstract

AbstractWith the success of large-scale pre-training and multilingual modeling in Natural Language Processing (NLP), recent years have seen a proliferation of large, Web-mined text datasets covering hundreds of languages. We manually audit the quality of 205 language-specific corpora released with five major public datasets (CCAligned, ParaCrawl, WikiMatrix, OSCAR, mC4). Lower-resource corpora have systematic issues: At least 15 corpora have no usable text, and a significant fraction contains less than 50% sentences of acceptable quality. In addition, many are mislabeled or use nonstandard/ambiguous language codes. We demonstrate that these issues are easy to detect even for non-proficient speakers, and supplement the human audit with automatic analyses. Finally, we recommend techniques to evaluate and improve multilingual corpora and discuss potential risks that come with low-quality data releases.

Publisher

MIT Press

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Reference59 articles.

1. JW300: A wide-coverage parallel corpus for low-resource languages;Agić,2019

2. AraELECTRA: Pre-training text discriminators for Arabic language understanding;Antoun,2021

3. Massively multilingual neural machine translation in the wild: Findings and challenges;Arivazhagan;arXiv preprint arXiv:1907.05019,2019

4. Massively multilingual sentence embeddings for zero-shot cross-lingual transfer and beyond;Artetxe;Transactions of the Association for Computational Linguistics,2019

5. Domain adaptation via pseudo in-domain data selection;Axelrod,2011

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large models of what? Mistaking engineering achievements for human linguistic agency;Language Sciences;2024-11

2. A large-scale audit of dataset licensing and attribution in AI;Nature Machine Intelligence;2024-08-30

3. FinDeBERTaV2: Word-Segmentation-Free Pre-trained Language Model for Finance;Transactions of the Japanese Society for Artificial Intelligence;2024-07-01

4. Addressing the data gap: building a parallel corpus for Kashmiri language;International Journal of Information Technology;2024-06-21

5. Demystifying Data Management for Large Language Models;Companion of the 2024 International Conference on Management of Data;2024-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3