Visually Grounded and Textual Semantic Models Differentially Decode Brain Activity Associated with Concrete and Abstract Nouns

Author:

Anderson Andrew J.1,Kiela Douwe2,Clark Stephen2,Poesio Massimo3

Affiliation:

1. Brain & Cognitive Sciences, University of Rochester,

2. Computer Laboratory, University of Cambridge,

3. School of Computer Science and Electronic Engineering, University of Essex,

Abstract

Important advances have recently been made using computational semantic models to decode brain activity patterns associated with concepts; however, this work has almost exclusively focused on concrete nouns. How well these models extend to decoding abstract nouns is largely unknown. We address this question by applying state-of-the-art computational models to decode functional Magnetic Resonance Imaging (fMRI) activity patterns, elicited by participants reading and imagining a diverse set of both concrete and abstract nouns. One of the models we use is linguistic, exploiting the recent word2vec skipgram approach trained on Wikipedia. The second is visually grounded, using deep convolutional neural networks trained on Google Images. Dual coding theory considers concrete concepts to be encoded in the brain both linguistically and visually, and abstract concepts only linguistically. Splitting the fMRI data according to human concreteness ratings, we indeed observe that both models significantly decode the most concrete nouns; however, accuracy is significantly greater using the text-based models for the most abstract nouns. More generally this confirms that current computational models are sufficiently advanced to assist in investigating the representational structure of abstract concepts in the brain.

Publisher

MIT Press - Journals

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Representational Structure;Cognitive Plausibility in Natural Language Processing;2023-10-31

2. Decoding Visual Neural Representations by Multimodal Learning of Brain-Visual-Linguistic Features;IEEE Transactions on Pattern Analysis and Machine Intelligence;2023-09-01

3. The Encoding of Meaning in Cerebral Activity;Neuroscience and Behavioral Physiology;2023-05

4. Robust Evaluation of Language–Brain Encoding Experiments;Computational Linguistics and Intelligent Text Processing;2023

5. Neural decoding of speech with semantic-based classification;Cortex;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3