Affiliation:
1. Ubiquitous Knowledge Processing Lab, Technische Universitaẗ Darmstadt
2. Dept. of Computer Science, University of Bristol.
3. Dept. of Computer Science, Royal Holloway, University of London.
Abstract
For many NLP applications, such as question answering and summarization, the goal is to select the best solution from a large space of candidates to meet a particular user’s needs. To address the lack of user or task-specific training data, we propose an interactive text ranking approach that actively selects pairs of candidates, from which the user selects the best. Unlike previous strategies, which attempt to learn a ranking across the whole candidate space, our method uses Bayesian optimization to focus the user’s labeling effort on high quality candidates and integrate prior knowledge to cope better with small data scenarios. We apply our method to community question answering (cQA) and extractive multidocument summarization, finding that it significantly outperforms existing interactive approaches. We also show that the ranking function learned by our method is an effective reward function for reinforcement learning, which improves the state of the art for interactive summarization.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献