Finding Convincing Arguments Using Scalable Bayesian Preference Learning

Author:

Simpson Edwin1,Gurevych Iryna1

Affiliation:

1. Ubiquitous Knowledge Processing Lab (UKP), Department of Computer Science, Technische Universität Darmstadt,

Abstract

We introduce a scalable Bayesian preference learning method for identifying convincing arguments in the absence of gold-standard ratings or rankings. In contrast to previous work, we avoid the need for separate methods to perform quality control on training data, predict rankings and perform pairwise classification. Bayesian approaches are an effective solution when faced with sparse or noisy training data, but have not previously been used to identify convincing arguments. One issue is scalability, which we address by developing a stochastic variational inference method for Gaussian process (GP) preference learning. We show how our method can be applied to predict argument convincingness from crowdsourced data, outperforming the previous state-of-the-art, particularly when trained with small amounts of unreliable data. We demonstrate how the Bayesian approach enables more effective active learning, thereby reducing the amount of data required to identify convincing arguments for new users and domains. While word embeddings are principally used with neural networks, our results show that word embeddings in combination with linguistic features also benefit GPs when predicting argument convincingness.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deciphering Personal Argument Styles – A Comprehensive Approach to Analyzing Linguistic Properties of Argument Preferences;Lecture Notes in Computer Science;2024

2. Discrete Text Summarization (DeTS): A Novel Method Grounded in Natural Language Inference and Grammatical Sequence Scoring;2023 IEEE Ninth International Conference on Big Data Computing Service and Applications (BigDataService);2023-07

3. Discourse-Aware Prompt for Argument Impact Classification;Proceedings of the 2023 15th International Conference on Machine Learning and Computing;2023-02-17

4. Don’t Raise Your Voice, Improve Your Argument: Learning to Retrieve Convincing Arguments;Lecture Notes in Computer Science;2023

5. Scientia Potentia Est—On the Role of Knowledge in Computational Argumentation;Transactions of the Association for Computational Linguistics;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3