Affiliation:
1. Ubiquitous Knowledge Processing Lab (UKP), Department of Computer Science, Technische Universität Darmstadt,
Abstract
We introduce a scalable Bayesian preference learning method for identifying convincing arguments in the absence of gold-standard ratings or rankings. In contrast to previous work, we avoid the need for separate methods to perform quality control on training data, predict rankings and perform pairwise classification. Bayesian approaches are an effective solution when faced with sparse or noisy training data, but have not previously been used to identify convincing arguments. One issue is scalability, which we address by developing a stochastic variational inference method for Gaussian process (GP) preference learning. We show how our method can be applied to predict argument convincingness from crowdsourced data, outperforming the previous state-of-the-art, particularly when trained with small amounts of unreliable data. We demonstrate how the Bayesian approach enables more effective active learning, thereby reducing the amount of data required to identify convincing arguments for new users and domains. While word embeddings are principally used with neural networks, our results show that word embeddings in combination with linguistic features also benefit GPs when predicting argument convincingness.
Subject
Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献