Compositional Generalization in Multilingual Semantic Parsing over Wikidata

Author:

Cui Ruixiang1,Aralikatte Rahul2,Lent Heather3,Hershcovich Daniel4

Affiliation:

1. Department of Computer Science University of Copenhagen, Denmark. rc@di.ku.dk

2. Department of Computer Science University of Copenhagen, Denmark. rahul@di.ku.dk

3. Department of Computer Science University of Copenhagen, Denmark. hcl@di.ku.dk

4. Department of Computer Science University of Copenhagen, Denmark. dh@di.ku.dk

Abstract

AbstractSemantic parsing (SP) allows humans to leverage vast knowledge resources through natural interaction. However, parsers are mostly designed for and evaluated on English resources, such as CFQ (Keysers et al., 2020), the current standard benchmark based on English data generated from grammar rules and oriented towards Freebase, an outdated knowledge base. We propose a method for creating a multilingual, parallel dataset of question-query pairs, grounded in Wikidata. We introduce such a dataset, which we call Multilingual Compositional Wikidata Questions (MCWQ), and use it to analyze the compositional generalization of semantic parsers in Hebrew, Kannada, Chinese, and English. While within- language generalization is comparable across languages, experiments on zero-shot cross- lingual transfer demonstrate that cross-lingual compositional generalization fails, even with state-of-the-art pretrained multilingual encoders. Furthermore, our methodology, dataset, and results will facilitate future research on SP in more realistic and diverse settings than has been possible with existing resources.

Publisher

MIT Press

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Reference79 articles.

1. Cross-lingual sentiment analysis without (good) translation;Abdalla,2017

2. Rewarding coreference resolvers for being consistent with world knowledge;Aralikatte,2019

3. Translation artifacts in cross- lingual transfer learning;Artetxe,2020

4. On the cross-lingual transferability of monolingual representations;Artetxe,2020

5. Neural machine translation by jointly learning to align and translate;Bahdanau,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3