FRMT: A Benchmark for Few-Shot Region-Aware Machine Translation

Author:

Riley Parker1,Dozat Timothy2,Botha Jan A.3,Garcia Xavier4,Garrette Dan5,Riesa Jason6,Firat Orhan7,Constant Noah8

Affiliation:

1. Google Research, USA. prkriley@google.com

2. Google Research, USA. tdozat@google.com

3. Google Research, USA. jabot@google.com

4. Google Research, USA. xgarcia@google.com

5. Google Research, USA. dhgarrette@google.com

6. Google Research, USA. riesa@google.com

7. Google Research, USA. orhanf@google.com

8. Google Research, USA. nconstant@google.com

Abstract

Abstract We present FRMT, a new dataset and evaluation benchmark for Few-shot Region-aware Machine Translation, a type of style-targeted translation. The dataset consists of professional translations from English into two regional variants each of Portuguese and Mandarin Chinese. Source documents are selected to enable detailed analysis of phenomena of interest, including lexically distinct terms and distractor terms. We explore automatic evaluation metrics for FRMT and validate their correlation with expert human evaluation across both region-matched and mismatched rating scenarios. Finally, we present a number of baseline models for this task, and offer guidelines for how researchers can train, evaluate, and compare their own models. Our dataset and evaluation code are publicly available: https://bit.ly/frmt-task.

Publisher

MIT Press

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Reference43 articles.

1. Findings of the 2021 conference on machine translation (WMT21);Akhbardeh,2021

2. e-pact: Esperto paraphrase aligned corpus of en-ep/bp translations;Barreiro;Traduçao em Revista,2017

3. A review of human evaluation for style transfer;Briakou,2021

4. Language models are few-shot learners;Brown,2020

5. WIT3: Web inventory of transcribed and translated talks;Cettolo,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligent English Translation Evaluation System Based on Internet Automation Technology;2023 International Conference on Data Science and Network Security (ICDSNS);2023-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3