Training Deterministic Parsers with Non-Deterministic Oracles

Author:

Goldberg Yoav1,Nivre Joakim2

Affiliation:

1. Bar-Ilan University, Department of Computer Science, Ramat-Gan, Israel,

2. Uppsala University, Department of Linguistics and Philology, Uppsala, Sweden,

Abstract

Greedy transition-based parsers are very fast but tend to suffer from error propagation. This problem is aggravated by the fact that they are normally trained using oracles that are deterministic and incomplete in the sense that they assume a unique canonical path through the transition system and are only valid as long as the parser does not stray from this path. In this paper, we give a general characterization of oracles that are nondeterministic and complete, present a method for deriving such oracles for transition systems that satisfy a property we call arc decomposition, and instantiate this method for three well-known transition systems from the literature. We say that these oracles are dynamic, because they allow us to dynamically explore alternative and nonoptimal paths during training — in contrast to oracles that statically assume a unique optimal path. Experimental evaluation on a wide range of data sets clearly shows that using dynamic oracles to train greedy parsers gives substantial improvements in accuracy. Moreover, this improvement comes at no cost in terms of efficiency, unlike other techniques like beam search.

Publisher

MIT Press - Journals

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Calculating the Optimal Step in Shift-Reduce Dependency Parsing: From Cubic to Linear Time;Transactions of the Association for Computational Linguistics;2019-11

2. Faster shift-reduce constituent parsing with a non-binary, bottom-up strategy;Artificial Intelligence;2019-10

3. Multitask Pointer Network for Korean Dependency Parsing;ACM Transactions on Asian and Low-Resource Language Information Processing;2019-07-24

4. Greedy Transition-Based Dependency Parsing with Stack LSTMs;Computational Linguistics;2017-06

5. Neural Network Methods for Natural Language Processing;Synthesis Lectures on Human Language Technologies;2017-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3