A Survey on Automated Fact-Checking

Author:

Guo Zhijiang1,Schlichtkrull Michael2,Vlachos Andreas3

Affiliation:

1. Department of Computer Science and Technology, University of Cambridge, UK. zg283@cam.ac.uk

2. Department of Computer Science and Technology, University of Cambridge, UK. mss84@cam.ac.uk

3. Department of Computer Science and Technology, University of Cambridge, UK. av308@cam.ac.uk

Abstract

Abstract Fact-checking has become increasingly important due to the speed with which both information and misinformation can spread in the modern media ecosystem. Therefore, researchers have been exploring how fact-checking can be automated, using techniques based on natural language processing, machine learning, knowledge representation, and databases to automatically predict the veracity of claims. In this paper, we survey automated fact-checking stemming from natural language processing, and discuss its connections to related tasks and disciplines. In this process, we present an overview of existing datasets and models, aiming to unify the various definitions given and identify common concepts. Finally, we highlight challenges for future research.

Publisher

MIT Press

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Reference205 articles.

1. Progress toward “the holy grail”: The continued quest to automate fact-checking;Adair,2017

2. Explainable fact checking with probabilistic answer set programming;Ahmadi,2019

3. Simple open stance classification for rumor analysis;Aker,2017

4. A survey on multimodal disinformation detection;Alam;arXiv preprint arXiv:2103.12541,2021

5. Where is your evidence: Improving fact-checking by justification modeling;Alhindi,2018

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synergizing machine learning & symbolic methods: A survey on hybrid approaches to natural language processing;Expert Systems with Applications;2024-10

2. IAT/ML: a metamodel and modelling approach for discourse analysis;Software and Systems Modeling;2024-09-11

3. Investigating Characteristics, Biases and Evolution of Fact-Checked Claims on the Web;Proceedings of the 35th ACM Conference on Hypertext and Social Media;2024-09-10

4. Artificial Intelligence Fact-checking Technology and the Sociotechnical Definition of ‘Factuality’;Korean Journal of Journalism & Communication Studies;2024-08-31

5. Depth Sensing in AI on Exploring the Nuances of Decision Maps for Explainability;Advances in Computational Intelligence and Robotics;2024-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3