ParsiNLU: A Suite of Language Understanding Challenges for Persian

Author:

Khashabi Daniel1,Cohan Arman1,Shakeri Siamak2,Hosseini Pedram3,Pezeshkpour Pouya4,Alikhani Malihe5,Aminnaseri Moin6,Bitaab Marzieh7,Brahman Faeze8,Ghazarian Sarik9,Gheini Mozhdeh,Kabiri Arman10,Mahabagdi Rabeeh Karimi11,Memarrast Omid12,Mosallanezhad Ahmadreza7,Noury Erfan13,Raji Shahab14,Rasooli Mohammad Sadegh15,Sadeghi Sepideh2,Azer Erfan Sadeqi2,Samghabadi Niloofar Safi16,Shafaei Mahsa,Sheybani Saber17,Tazarv Ali4,Yaghoobzadeh Yadollah18

Affiliation:

1. Allen Institute for AI, USA

2. Google, USA

3. George Washington University, USA

4. UC Irvine, USA

5. University of Pittsburgh, USA

6. TaskRabbit, USA

7. Arizona State University, USA

8. UC Santa Cruz, USA

9. University of Southern California, USA

10. IMRSV Data Labs, Canada

11. EPFL, Switzerland

12. University of Illinois - Chicago, USA

13. University of Maryland Baltimore County, USA

14. Rutgers University, USA

15. University of Pennsylvania, USA

16. Expedia Inc., USA

17. Indiana University - Bloomington, USA

18. Microsoft, Canada

Abstract

Abstract Despite the progress made in recent years in addressing natural language understanding (NLU) challenges, the majority of this progress remains to be concentrated on resource-rich languages like English. This work focuses on Persian language, one of the widely spoken languages in the world, and yet there are few NLU datasets available for this language. The availability of high-quality evaluation datasets is a necessity for reliable assessment of the progress on different NLU tasks and domains. We introduce ParsiNLU, the first benchmark in Persian language that includes a range of language understanding tasks—reading comprehension, textual entailment, and so on. These datasets are collected in a multitude of ways, often involving manual annotations by native speakers. This results in over 14.5k new instances across 6 distinct NLU tasks. Additionally, we present the first results on state-of-the-art monolingual and multilingual pre-trained language models on this benchmark and compare them with human performance, which provides valuable insights into our ability to tackle natural language understanding challenges in Persian. We hope ParsiNLU fosters further research and advances in Persian language understanding.1

Publisher

MIT Press - Journals

Reference71 articles.

1. Farstail: A Persian natural language inference dataset;Amirkhani;arXiv preprint arXiv:2009.08820,2020

2. Multiple instance learning networks for fine-grained sentiment analysis;Angelidis;Transactions of the Association for Computational Linguistics,2018

3. Translation artifacts in cross-lingual transfer learning;Artetxe,2020

4. On the cross-lingual transferability of monolingual representations;Artetxe,2020

5. Optimizing annotation effort using active learning strategies: A sentiment analysis case study in Persian;Asli,2020

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3