Explanation-Based Human Debugging of NLP Models: A Survey

Author:

Lertvittayakumjorn Piyawat1,Toni Francesca2

Affiliation:

1. Department of Computing, Imperial College London, UK. pl1515@imperial.ac.uk

2. Department of Computing, Imperial College London, UK. ftft@imperial.ac.uk

Abstract

AbstractDebugging a machine learning model is hard since the bug usually involves the training data and the learning process. This becomes even harder for an opaque deep learning model if we have no clue about how the model actually works. In this survey, we review papers that exploit explanations to enable humans to give feedback and debug NLP models. We call this problem explanation-based human debugging (EBHD). In particular, we categorize and discuss existing work along three dimensions of EBHD (the bug context, the workflow, and the experimental setting), compile findings on how EBHD components affect the feedback providers, and highlight open problems that could be future research directions.

Publisher

MIT Press

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. To Err Is AI! Debugging as an Intervention to Facilitate Appropriate Reliance on AI Systems;Proceedings of the 35th ACM Conference on Hypertext and Social Media;2024-09-10

2. DDImage: an image reduction based approach for automatically explaining black-box classifiers;Empirical Software Engineering;2024-07-30

3. Classifying Ambiguous Requirements: An Explainable Approach in Railway Industry;2024 IEEE 32nd International Requirements Engineering Conference Workshops (REW);2024-06-24

4. RA3: A Human-in-the-loop Framework for Interpreting and Improving Image Captioning with Relation-Aware Attribution Analysis;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

5. Going Beyond XAI: A Systematic Survey for Explanation-Guided Learning;ACM Computing Surveys;2024-04-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3