Unifying Structured Data as Graph for Data-to-Text Pre-Training

Author:

Li Shujie1,Li Liang2,Geng Ruiying3,Yang Min4,Li Binhua3,Yuan Guanghu5,He Wanwei5,Yuan Shao3,Ma Can2,Huang Fei3,Li Yongbin6

Affiliation:

1. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China. sj.li1@siat.ac.cn

2. Institute of Information Engineering, Chinese Academy of Sciences, China

3. DAMO Academy, Alibaba Group, China

4. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China. min.yang@siat.ac.cn

5. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China

6. DAMO Academy, Alibaba Group, China. shuide.lyb@alibaba-inc.com

Abstract

Abstract Data-to-text (D2T) generation aims to transform structured data into natural language text. Data-to-text pre-training has proved to be powerful in enhancing D2T generation and yields impressive performance. However, previous pre-training methods either oversimplified structured data into a sequence without considering input structures or designed training objectives tailored for a specific data structure (e.g., table or knowledge graph). In this paper, we unify different types of structured data (i.e., table, key-value data, knowledge graph) into the graph format and cast different D2T generation tasks as graph-to-text generation. To effectively exploit the structural information of the input graph, we propose a structure-enhanced pre-training method for D2T generation by designing a structure-enhanced Transformer. Concretely, we devise a position matrix for the Transformer, encoding relative positional information of connected nodes in the input graph. In addition, we propose a new attention matrix to incorporate graph structures into the original Transformer by taking the available explicit connectivity structure into account. Extensive experiments on six benchmark datasets show the effectiveness of our model. Our source codes are available at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/unid2t.

Publisher

MIT Press

Reference66 articles.

1. Knowledge graph based synthetic corpus generation for knowledge-enhanced language model pre-training;Agarwal,2021

2. Cont: Contrastive neural text generation;An;arXiv preprint arXiv:2205.14690,2022

3. Table-to-text generation and pre-training with tabt5;Andrejczuk;arXiv preprint arXiv:2210.09162,2022

4. Graph pre-training for amr parsing and generation;Bai,2022

5. Meteor: An automatic metric for MT evaluation with improved correlation with human judgments;Banerjee,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3