Multi 3 WOZ: A Multilingual, Multi-Domain, Multi-Parallel Dataset for Training and Evaluating Culturally Adapted Task-Oriented Dialog Systems

Author:

Hu Songbo1,Zhou Han2,Hergul Mete3,Gritta Milan4,Zhang Guchun5,Iacobacci Ignacio6,Vulić Ivan7,Korhonen Anna8

Affiliation:

1. Language Technology Lab, University of Cambridge, UK. sh2091@cam.ac.uk

2. Language Technology Lab, University of Cambridge, UK. hz416@cam.ac.uk

3. Language Technology Lab, University of Cambridge, UK. mh2071@cam.ac.uk

4. Huawei Noah’s Ark Lab, London, UK. milan.gritta@huawei.com

5. Huawei Noah’s Ark Lab, London, UK. guchun.zhang@huawei.com

6. Huawei Noah’s Ark Lab, London, UK. ignacio.iacobacci@huawei.com

7. Language Technology Lab, University of Cambridge, UK. iv250@cam.ac.uk

8. Language Technology Lab, University of Cambridge, UK. alk23@cam.ac.uk

Abstract

Abstract Creating high-quality annotated data for task-oriented dialog (ToD) is known to be notoriously difficult, and the challenges are amplified when the goal is to create equitable, culturally adapted, and large-scale ToD datasets for multiple languages. Therefore, the current datasets are still very scarce and suffer from limitations such as translation-based non-native dialogs with translation artefacts, small scale, or lack of cultural adaptation, among others. In this work, we first take stock of the current landscape of multilingual ToD datasets, offering a systematic overview of their properties and limitations. Aiming to reduce all the detected limitations, we then introduce Multi3WOZ, a novel multilingual, multi-domain, multi-parallel ToD dataset. It is large-scale and offers culturally adapted dialogs in 4 languages to enable training and evaluation of multilingual and cross-lingual ToD systems. We describe a complex bottom–up data collection process that yielded the final dataset, and offer the first sets of baseline scores across different ToD-related tasks for future reference, also highlighting its challenging nature.

Publisher

MIT Press

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Reference66 articles.

1. MasakhaNER: Named entity recognition for African languages;Adelani;Transactions of the Association for Computational Linguistics,2021

2. An ontology-based dialogue management system for banking and finance dialogue systems;Altinok;CoRR,2018

3. Translation artifacts in cross-lingual transfer learning;Artetxe,2020

4. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments;Banerjee,2005

5. Crowdsourcing Named Entity Recognition and Entity Linking Corpora

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3