PaniniQA: Enhancing Patient Education Through Interactive Question Answering

Author:

Cai Pengshan1,Yao Zonghai2,Liu Fei3,Wang Dakuo4,Reilly Meghan5,Zhou Huixue6,Li Lingxi7,Cao Yi8,Kapoor Alok9,Bajracharya Adarsha10,Berlowitz Dan11,Yu Hong121314

Affiliation:

1. University of Massachusetts, Amherst, USA pengshancai@umass.edu

2. University of Massachusetts, Amherst, USA zonghaiyao@umass.edu

3. Emory University, USA fei.liu@emory.edu

4. Northeastern University, USA d.wang@neu.edu

5. UMass Chan Medical School, USA Meghan.Reilly@umassmed.edu

6. University of Minnesota, USA zhou1742@umn.edu

7. University of Massachusetts, Amherst, USA lingxili@umass.edu

8. University of Massachusetts, Amherst, USA yicao@umass.edu

9. UMass Chan Medical School, USA Alok.Kapoor@umassmemorial.org

10. UMass Chan Medical School, USA adarsha.Bajracharya@umassmemorial.org

11. University of Massachusetts, Lowell, USA Dan_Berlowitz@uml.edu

12. University of Massachusetts, Amherst, USA

13. UMass Chan Medical School, USA

14. University of Massachusetts, Lowell, USA hongyu@umass.edu

Abstract

Abstract A patient portal allows discharged patients to access their personalized discharge instructions in electronic health records (EHRs). However, many patients have difficulty understanding or memorizing their discharge instructions (Zhao et al., 2017). In this paper, we present PaniniQA, a patient-centric interactive question answering system designed to help patients understand their discharge instructions. PaniniQA first identifies important clinical content from patients’ discharge instructions and then formulates patient-specific educational questions. In addition, PaniniQA is also equipped with answer verification functionality to provide timely feedback to correct patients’ misunderstandings. Our comprehensive automatic & human evaluation results demonstrate our PaniniQA is capable of improving patients’ mastery of their medical instructions through effective interactions.1

Publisher

MIT Press

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Reference64 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3