Beyond Boundaries: A Human-like Approach for Question Answering over Structured and Unstructured Information Sources

Author:

Lehmann Jens12,Bhandiwad Dhananjay3,Gattogi Preetam4,Vahdati Sahar5

Affiliation:

1. Amazon, Germany jlehmnn@amazon.com

2. ScaDS.AI / TU Dresden, Germany

3. ScaDS.AI / TU Dresden, Germany dhananjay.bhandiwad@tu-dresden.de

4. ScaDS.AI / TU Dresden, Germany preetam.gattogi@tu-dresden.de

5. ScaDS.AI / TU Dresden, Germany sahar.vahdati@tu-dresden.de

Abstract

Abstract Answering factual questions from heterogenous sources, such as graphs and text, is a key capacity of intelligent systems. Current approaches either (i) perform question answering over text and structured sources as separate pipelines followed by a merge step or (ii) provide an early integration, giving up the strengths of particular information sources. To solve this problem, we present “HumanIQ”, a method that teaches language models to dynamically combine retrieved information by imitating how humans use retrieval tools. Our approach couples a generic method for gathering human demonstrations of tool use with adaptive few-shot learning for tool augmented models. We show that HumanIQ confers significant benefits, including i) reducing the error rate of our strongest baseline (GPT-4) by over 50% across 3 benchmarks, (ii) improving human preference over responses from vanilla GPT-4 (45.3% wins, 46.7% ties, 8.0% loss), and (iii) outperforming numerous task-specific baselines.

Publisher

MIT Press

Reference46 articles.

1. Direct fact retrieval from knowledge graphs without entity linking;Baek,2023

2. Hybrid question answering using heuristic methods and linked data schema;Bahmid,2018

3. Improving language models by retrieving from trillions of tokens;Borgeaud,2022

4. Language models are few-shot learners;Brown;Advances in Neural Information Processing Systems,2020

5. Conversational question answering on heterogeneous sources;Christmann,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3