Neuro-symbolic Natural Logic with Introspective Revision for Natural Language Inference

Author:

Feng Yufei1,Yang Xiaoyu2,Zhu Xiaodan3,Greenspan Michael4

Affiliation:

1. Ingenuity Labs Research Institute & ECE, Queen’s University, Canada. feng.yufei@queensu.ca

2. Ingenuity Labs Research Institute & ECE, Queen’s University, Canada. xiaoyu.yang@queensu.ca

3. Ingenuity Labs Research Institute & ECE, Queen’s University, Canada. xiaodan.zhu@queensu.ca

4. Ingenuity Labs Research Institute & ECE, Queen’s University, Canada. michael.greenspan@queensu.ca

Abstract

Abstract We introduce a neuro-symbolic natural logic framework based on reinforcement learning with introspective revision. The model samples and rewards specific reasoning paths through policy gradient, in which the introspective revision algorithm modifies intermediate symbolic reasoning steps to discover reward-earning operations as well as leverages external knowledge to alleviate spurious reasoning and training inefficiency. The framework is supported by properly designed local relation models to avoid input entangling, which helps ensure the interpretability of the proof paths. The proposed model has built-in interpretability and shows superior capability in monotonicity inference, systematic generalization, and interpretability, compared with previous models on the existing datasets.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Reference62 articles.

1. Modular multitask reinforcement learning with policy sketches;Andreas,2017

2. Hindsight experience replay;Andrychowicz,2017

3. Naturalli: Natural logic inference for common sense reasoning;Angeli,2014

4. Language of thought: The connectionist contribution;Aydede;Minds and Machines,1997

5. The semantics of variety in categorial grammar;van Benthem;Categorial Grammar,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3