Large Language Models Enable Few-Shot Clustering

Author:

Viswanathan Vijay1,Gashteovski Kiril2,Gashteovski Kiril3,Lawrence Carolin2,Wu Tongshuang1,Neubig Graham1

Affiliation:

1. Carnegie Mellon University, USA

2. NEC Laboratories Europe, Germany

3. Center for Advanced Interdisciplinary Research, Ss. Cyril and Methodius Uni. of Skopje, Germany

Abstract

Abstract Unlike traditional unsupervised clustering, semi-supervised clustering allows users to provide meaningful structure to the data, which helps the clustering algorithm to match the user’s intent. Existing approaches to semi-supervised clustering require a significant amount of feedback from an expert to improve the clusters. In this paper, we ask whether a large language model (LLM) can amplify an expert’s guidance to enable query-efficient, few-shot semi-supervised text clustering. We show that LLMs are surprisingly effective at improving clustering. We explore three stages where LLMs can be incorporated into clustering: before clustering (improving input features), during clustering (by providing constraints to the clusterer), and after clustering (using LLMs post-correction). We find that incorporating LLMs in the first two stages routinely provides significant improvements in cluster quality, and that LLMs enable a user to make trade-offs between cost and accuracy to produce desired clusters. We release our code and LLM prompts for the public to use.1

Publisher

MIT Press

Reference40 articles.

1. A survey of text clustering algorithms;Aggarwal,2012

2. k-means++: the advantages of careful seeding;Arthur,2007

3. Local algorithms for interactive clustering;Awasthi;Journal of Machine Learning Research,2013

4. Interactive clustering: A comprehensive review;Bae;ACM Computing Surveys,2020

5. Open information extraction from the web;Banko,2007

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Consumer segmentation with large language models;Journal of Retailing and Consumer Services;2025-01

2. Classifying User Roles in Online News Forums: A Model for User Interaction and Behavior Analysis;Adjunct Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization;2024-06-27

3. Large Language Model-assisted Clustering and Concept Identification of Engineering Design Data;2024 IEEE Conference on Artificial Intelligence (CAI);2024-06-25

4. Concept Induction: Analyzing Unstructured Text with High-Level Concepts Using LLooM;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11

5. Beyond Words: A Comparative Analysis of LLM Embeddings for Effective Clustering;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3