Consistent Unsupervised Estimators for Anchored PCFGs

Author:

Clark Alexander1,Fijalkow Nathanaël2

Affiliation:

1. Department of Philosophy, King’s College London, United Kingdom. alexsclark@gmail.com

2. CNRS, LaBRI, Bordeaux, and The Alan Turing Institute of Data Science, London, United Kingdom. nathanael.fijalkow@labri.fr

Abstract

Abstract Learning probabilistic context-free grammars (PCFGs) from strings is a classic problem in computational linguistics since Horning (1969). Here we present an algorithm based on distributional learning that is a consistent estimator for a large class of PCFGs that satisfy certain natural conditions including being anchored (Stratos et al., 2016). We proceed via a reparameterization of (top–down) PCFGs that we call a bottom–up weighted context-free grammar. We show that if the grammar is anchored and satisfies additional restrictions on its ambiguity, then the parameters can be directly related to distributional properties of the anchoring strings; we show the asymptotic correctness of a naive estimator and present some simulations using synthetic data that show that algorithms based on this approach have good finite sample behavior.

Publisher

MIT Press - Journals

Reference29 articles.

1. Omri Abend , TomKwiatkowski, Nathaniel J.Smith, SharonGoldwater, and MarkSteedman. 2017. Bootstrapping language acquisition. Cognition, 164:116–143.

2. Pieter Adriaans . 1999. Learning shallow context-free languages under simple distributions. Technical Report ILLC Report PP-1999-13, Institute for Logic, Language and Computation, Amsterdam.

3. James K. Baker . 1979. Trainable grammars for speech recognition. In Speech Communication Papers for the 97th Meeting of the Acoustic Society of America, pages 547–550.

4. Zhiyi Chi . 1999. Statistical properties of probabilistic context-free grammars. Computational Linguistics, 25(1):131–160.

5. Kenneth Ward Church and PatrickHanks. 1990. Word association norms, mutual information, and lexicography. Computational Linguistics, 16(1):22–29.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3