Learning More from Mixed Emotions: A Label Refinement Method for Emotion Recognition in Conversations

Author:

Wen Jintao1,Tu Geng2,Li Rui3,Jiang Dazhi4,Zhu Wenhua5

Affiliation:

1. Department of Computer Science, Shantou University, China. 20jtwen@stu.edu.cn

2. Department of Computer Science, Shantou University, China. 19gtu@stu.edu.cn

3. Department of Computer Science, Shantou University, China. ruili@stu.edu.cn

4. Department of Computer Science, Shantou University, China. dzjiang@stu.edu.cn

5. Department of Computer Science, Shantou University, China. 21whzhu@stu.edu.cn

Abstract

Abstract One-hot labels are commonly employed as ground truth in Emotion Recognition in Conversations (ERC). However, this approach may not fully encompass all the emotions conveyed in a single utterance, leading to suboptimal performance. Regrettably, current ERC datasets lack comprehensive emotionally distributed labels. To address this issue, we propose the Emotion Label Refinement (EmoLR) method, which utilizes context- and speaker-sensitive information to infer mixed emotional labels. EmoLR comprises an Emotion Predictor (EP) module and a Label Refinement (LR) module. The EP module recognizes emotions and provides context/speaker states for the LR module. Subsequently, the LR module calculates the similarity between these states and ground-truth labels, generating a refined label distribution (RLD). The RLD captures a more comprehensive range of emotions than the original one-hot labels. These refined labels are then used for model training in place of the one-hot labels. Experimental results on three public conversational datasets demonstrate that our EmoLR achieves state-of-the-art performance.

Publisher

MIT Press

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Reference50 articles.

1. Label refinery: Improving imagenet classification through label progression;Bagherinezhad;ArXiv,2018

2. Iemocap: Interactive emotional dyadic motion capture database;Busso;Language Resources and Evaluation,2008

3. The hourglass of emotions;Cambria,2012

4. New avenues in opinion mining and sentiment analysis;Cambria;IEEE Intelligent Systems,2013

5. Fuzzy commonsense reasoning for multimodal sentiment analysis;Chaturvedi;Pattern Recognition Letters,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3