Revisiting Negation in Neural Machine Translation

Author:

Tang Gongbo1,Rönchen Philipp2,Sennrich Rico34,Nivre Joakim5

Affiliation:

1. Department of Linguistics and Philology, Uppsala University, Sweden. gongbo.tang@lingfil.uu.se

2. Department of Linguistics and Philology, Uppsala University, Sweden. philipp.rönchen@lingfil.uu.se

3. Department of Computational Linguistics, University of Zurich, Switzerland

4. School of Informatics, University of Edinburgh. rico.sennrich@ed.ac.uk

5. Department of Linguistics and Philology, Uppsala University, Sweden. joakim.nivre@lingfil.uu.se

Abstract

In this paper, we evaluate the translation of negation both automatically and manually, in English–German (EN–DE) and English– Chinese (EN–ZH). We show that the ability of neural machine translation (NMT) models to translate negation has improved with deeper and more advanced networks, although the performance varies between language pairs and translation directions. The accuracy of manual evaluation in EN→DE, DE→EN, EN→ZH, and ZH→EN is 95.7%, 94.8%, 93.4%, and 91.7%, respectively. In addition, we show that under-translation is the most significant error type in NMT, which contrasts with the more diverse error profile previously observed for statistical machine translation. To better understand the root of the under-translation of negation, we study the model’s information flow and training data. While our information flow analysis does not reveal any deficiencies that could be used to detect or fix the under-translation of negation, we find that negation is often rephrased during training, which could make it more difficult for the model to learn a reliable link between source and target negation. We finally conduct intrinsic analysis and extrinsic probing tasks on negation, showing that NMT models can distinguish negation and non-negation tokens very well and encode a lot of information about negation in hidden states but nevertheless leave room for improvement.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Reference35 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigating Word Vectors for the Negation of Verbs;SN Computer Science;2024-01-20

2. MENLI: Robust Evaluation Metrics from Natural Language Inference;Transactions of the Association for Computational Linguistics;2023

3. Applications and challenges of SA in real-life scenarios;Computational Intelligence Applications for Text and Sentiment Data Analysis;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3