Modeling Non-Cooperative Dialogue: Theoretical and Empirical Insights

Author:

Sicilia Anthony1,Maidment Tristan2,Healy Pat3,Alikhani Malihe4

Affiliation:

1. Intelligent Systems Program, University of Pittsburgh, Pittsburgh, USA. anthonysicilia@pitt.edu

2. Intelligent Systems Program, University of Pittsburgh, Pittsburgh, USA. tristan.maidment@pitt.edu

3. Department of Informatics and Networked Systems, University of Pittsburgh, Pittsburgh, USA. pat.healy@pitt.edu

4. Department of Computer Science and Intelligent Systems Program, University of Pittsburgh, Pittsburgh, USA. malihe@pitt.edu

Abstract

Abstract Investigating cooperativity of interlocutors is central in studying pragmatics of dialogue. Models of conversation that only assume cooperative agents fail to explain the dynamics of strategic conversations. Thus, we investigate the ability of agents to identify non-cooperative interlocutors while completing a concurrent visual-dialogue task. Within this novel setting, we study the optimality of communication strategies for achieving this multi-task objective. We use the tools of learning theory to develop a theoretical model for identifying non-cooperative interlocutors and apply this theory to analyze different communication strategies. We also introduce a corpus of non-cooperative conversations about images in the GuessWhat?! dataset proposed by De Vries et al. (2017). We use reinforcement learning to implement multiple communication strategies in this context and find that empirical results validate our theory.

Publisher

MIT Press

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Reference63 articles.

1. Deception detection using a multimodal approach;Abouelenien,2014

2. Strategic conversation;Asher;Semantics and Pragmatics,2013

3. Improved generalization bounds for robust learning;Attias,2019

4. The change that matters in discourse parsing: Estimating the impact of domain shift on parser error;Atwell,2022

5. Human-machine dialogue as a stochastic game;Barlier,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pointing out Human Answer Mistakes in a Goal-Oriented Visual Dialogue;2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW);2023-10-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3