DMDD: A Large-Scale Dataset for Dataset Mentions Detection

Author:

Pan Huitong1,Zhang Qi2,Dragut Eduard3,Caragea Cornelia4,Latecki Longin Jan5

Affiliation:

1. Temple University, Philadelphia, Pennsylvania, USA. huitong.pan@temple.edu

2. Temple University, Philadelphia, Pennsylvania, USA. qi.zhang@temple.edu

3. Temple University, Philadelphia, Pennsylvania, USA. edragut@temple.edu

4. University of Illinois Chicago, Chicago, Illinois, USA. cornelia@uic.edu

5. Temple University, Philadelphia, Pennsylvania, USA. latecki@temple.edu

Abstract

Abstract The recognition of dataset names is a critical task for automatic information extraction in scientific literature, enabling researchers to understand and identify research opportunities. However, existing corpora for dataset mention detection are limited in size and naming diversity. In this paper, we introduce the Dataset Mentions Detection Dataset (DMDD), the largest publicly available corpus for this task. DMDD consists of the DMDD main corpus, comprising 31,219 scientific articles with over 449,000 dataset mentions weakly annotated in the format of in-text spans, and an evaluation set, which comprises 450 scientific articles manually annotated for evaluation purposes. We use DMDD to establish baseline performance for dataset mention detection and linking. By analyzing the performance of various models on DMDD, we are able to identify open problems in dataset mention detection. We invite the community to use our dataset as a challenge to develop novel dataset mention detection models.

Publisher

MIT Press

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Reference29 articles.

1. The ACE 2005 (ACE 05) evaluation plan evaluation of the detection and recognition of ace entities, values, temporal expressions, relations, and events 1;ACE,2005

2. EmoNet: Fine-grained emotion detection with gated recurrent neural networks;Abdul-Mageed,2017

3. SemEval 2017 task 10: ScienceIE - extracting keyphrases and relations from scientific publications;Augenstein,2017

4. Scibert: A pretrained language model for scientific text;Iz,2019

5. Longformer: The long-document transformer;Iz;arXiv preprint arXiv:2004.05150,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3