Aspect-augmented Adversarial Networks for Domain Adaptation

Author:

Zhang Yuan1,Barzilay Regina1,Jaakkola Tommi1

Affiliation:

1. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,

Abstract

We introduce a neural method for transfer learning between two (source and target) classification tasks or aspects over the same domain. Rather than training on target labels, we use a few keywords pertaining to source and target aspects indicating sentence relevance instead of document class labels. Documents are encoded by learning to embed and softly select relevant sentences in an aspect-dependent manner. A shared classifier is trained on the source encoded documents and labels, and applied to target encoded documents. We ensure transfer through aspect-adversarial training so that encoded documents are, as sets, aspect-invariant. Experimental results demonstrate that our approach outperforms different baselines and model variants on two datasets, yielding an improvement of 27% on a pathology dataset and 5% on a review dataset.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Generative Adversarial Framework for Dialogue Generation with Neural Architecture Search;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

2. A coarse-to-fine unsupervised domain adaptation method based on metric learning;Journal of Intelligent & Fuzzy Systems;2024-01-10

3. Dual-View Stack State Learning Network for Attribute-Based Container Location Assignment;Lecture Notes in Computer Science;2024

4. Graph Contrastive Learning with Generative Adversarial Network;Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2023-08-04

5. Zero-shot stance detection: Paradigms and challenges;Frontiers in Artificial Intelligence;2023-01-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3