Revisiting Few-shot Relation Classification: Evaluation Data and Classification Schemes

Author:

Sabo Ofer1,Elazar Yanai23,Goldberg Yoav24,Dagan Ido5

Affiliation:

1. Computer Science Department, Bar Ilan University, Israel. ofersabo@gmail.com

2. Computer Science Department, Bar Ilan University, Israel

3. Allen Institute for Artificial Intelligence. yanaiela@gmail.com

4. Allen Institute for Artificial Intelligence. yoav.goldberg@gmail.com

5. Computer Science Department, Bar Ilan University, Israel. ido.k.dagan@gmail.com

Abstract

We explore few-shot learning (FSL) for relation classification (RC). Focusing on the realistic scenario of FSL, in which a test instance might not belong to any of the target categories (none-of-the-above, [NOTA]), we first revisit the recent popular dataset structure for FSL, pointing out its unrealistic data distribution. To remedy this, we propose a novel methodology for deriving more realistic few-shot test data from available datasets for supervised RC, and apply it to the TACRED dataset. This yields a new challenging benchmark for FSL-RC, on which state of the art models show poor performance. Next, we analyze classification schemes within the popular embedding-based nearest-neighbor approach for FSL, with respect to constraints they impose on the embedding space. Triggered by this analysis, we propose a novel classification scheme in which the NOTA category is represented as learned vectors, shown empirically to be an appealing option for FSL.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Reference30 articles.

1. Matching the blanks: Distributional similarity for relation learning;Soares,2019

2. Few-shot text classification with distributional signatures;Bao,2020

3. Few-shot text classification with distributional signatures;Bao,2020

4. BERT: Pre-training of deep bidirectional transformers for language understanding;Devlin,2019

5. Learning better data representation using inference-driven metric learning;Dhillon,2010

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3