ReCOGS: How Incidental Details of a Logical Form Overshadow an Evaluation of Semantic Interpretation

Author:

Wu Zhengxuan1,Manning Christopher D.2,Potts Christopher3

Affiliation:

1. Stanford University, USA. wuzhengx@stanford.edu

2. Stanford University, USA. manning@stanford.edu

3. Stanford University, USA. cgpotts@stanford.edu

Abstract

Abstract Compositional generalization benchmarks for semantic parsing seek to assess whether models can accurately compute meanings for novel sentences, but operationalize this in terms of logical form (LF) prediction. This raises the concern that semantically irrelevant details of the chosen LFs could shape model performance. We argue that this concern is realized for the COGS benchmark (Kim and Linzen, 2020). COGS poses generalization splits that appear impossible for present-day models, which could be taken as an indictment of those models. However, we show that the negative results trace to incidental features of COGS LFs. Converting these LFs to semantically equivalent ones and factoring out capabilities unrelated to semantic interpretation, we find that even baseline models get traction. A recent variable-free translation of COGS LFs suggests similar conclusions, but we observe this format is not semantically equivalent; it is incapable of accurately representing some COGS meanings. These findings inform our proposal for ReCOGS, a modified version of COGS that comes closer to assessing the target semantic capabilities while remaining very challenging. Overall, our results reaffirm the importance of compositional generalization and careful benchmark task design.

Publisher

MIT Press

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Reference40 articles.

1. Lexicon learning for few shot sequence modeling;Akyurek,2021

2. Abstract Meaning Representation for sembanking;Banarescu,2013

3. Systematic generalization with edge transformers;Bergen,2021

4. Smatch: An evaluation metric for semantic feature structures;Cai,2013

5. Meta-learning to compositionally generalize;Conklin,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3