Predicting Document Coverage for Relation Extraction

Author:

Singhania Sneha1,Razniewski Simon2,Weikum Gerhard3

Affiliation:

1. Max Planck Institute for Informatics, Germany. ssinghan@mpi-inf.mpg.de"

2. Max Planck Institute for Informatics, Germany. srazniew@mpi-inf.mpg.de"

3. Max Planck Institute for Informatics, Germany. weikum@mpi-inf.mpg.de"

Abstract

Abstract This paper presents a new task of predicting the coverage of a text document for relation extraction (RE): Does the document contain many relational tuples for a given entity? Coverage predictions are useful in selecting the best documents for knowledge base construction with large input corpora. To study this problem, we present a dataset of 31,366 diverse documents for 520 entities. We analyze the correlation of document coverage with features like length, entity mention frequency, Alexa rank, language complexity, and information retrieval scores. Each of these features has only moderate predictive power. We employ methods combining features with statistical models like TF-IDF and language models like BERT. The model combining features and BERT, HERB, achieves an F1 score of up to 46%. We demonstrate the utility of coverage predictions on two use cases: KB construction and claim refutation.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Reference39 articles.

1. Negative statements considered useful;Arnaout;Journal of Web Semantics,2021

2. Latent dirichl et allocation;Blei;Journal of Machine Learning Research,2003

3. Seeing things from a different angle: Discovering diverse perspectives about claims;Chen,2019

4. Deeper text understanding for IR with contextual neural language modeling;Dai,2019

5. Completeness statements about RDF data sources and their use for query answering;Darari,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3