PADA: Example-based Prompt Learning for on-the-fly Adaptation to Unseen Domains

Author:

Ben-David Eyal1,Oved Nadav2,Reichart Roi3

Affiliation:

1. Technion - Israel Institute of Technology, Israel. eyalbd12@campus.technion.ac.il

2. Technion - Israel Institute of Technology, Israel. nadavo@campus.technion.ac.il

3. Technion - Israel Institute of Technology, Israel. roiri@technion.ac.il

Abstract

Abstract Natural Language Processing algorithms have made incredible progress, but they still struggle when applied to out-of-distribution examples. We address a challenging and underexplored version of this domain adaptation problem, where an algorithm is trained on several source domains, and then applied to examples from unseen domains that are unknown at training time. Particularly, no examples, labeled or unlabeled, or any other knowledge about the target domain are available to the algorithm at training time. We present PADA: An example-based autoregressive Prompt learning algorithm for on-the-fly Any-Domain Adaptation, based on the T5 language model. Given a test example, PADA first generates a unique prompt for it and then, conditioned on this prompt, labels the example with respect to the NLP prediction task. PADA is trained to generate a prompt that is a token sequence of unrestricted length, consisting of Domain Related Features (DRFs) that characterize each of the source domains. Intuitively, the generated prompt is a unique signature that maps the test example to a semantic space spanned by the source domains. In experiments with 3 tasks (text classification and sequence tagging), for a total of 14 multi-source adaptation scenarios, PADA substantially outperforms strong baselines.1

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Reference73 articles.

1. Invariant risk minimization;Arjovsky;CoRR,2019

2. Perl: Pivot-based domain adaptation for pre-trained deep contextualized embedding models;Ben-David;Transactions of the Association for Computational Linguistics,2020

3. Biographies, Bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification;Blitzer,2007

4. Zero-shot domain adaptation: A multi-view approach;Blitzer,2009

5. Domain adaptation with structural correspondence learning;Blitzer,2006

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3