Improving Topic Models with Latent Feature Word Representations

Author:

Nguyen Dat Quoc1,Billingsley Richard1,Du Lan1,Johnson Mark23

Affiliation:

1. Department of Computing, Macquarie University, Sydney, Australia,

2. Department of Computing, Macquarie University, Sydney, Australia

3. Santa Fe Institute, Santa Fe, New Mexico, USA,

Abstract

Probabilistic topic models are widely used to discover latent topics in document collections, while latent feature vector representations of words have been used to obtain high performance in many NLP tasks. In this paper, we extend two different Dirichlet multinomial topic models by incorporating latent feature vector representations of words trained on very large corpora to improve the word-topic mapping learnt on a smaller corpus. Experimental results show that by using information from the external corpora, our new models produce significant improvements on topic coherence, document clustering and document classification tasks, especially on datasets with few or short documents.

Publisher

MIT Press - Journals

Cited by 151 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigating the optimal number of topics by advanced text-mining techniques: Sustainable energy research;Engineering Applications of Artificial Intelligence;2024-10

2. Explainable paper classification system using topic modeling and SHAP;Intelligent Data Analysis;2024-08-01

3. A Multi-View Clustering Algorithm for Short Text;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

4. Short text classification using semantically enriched topic model;Journal of Information Science;2024-03-20

5. Semantic Annotation of Relational Schemas Using a Probabilistic Generative Model;Proceedings of the 7th Joint International Conference on Data Science & Management of Data (11th ACM IKDD CODS and 29th COMAD);2024-01-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3