Can Authorship Attribution Models Distinguish Speakers in Speech Transcripts?

Author:

Aggazzotti Cristina1,Andrews Nicholas2,Smith Elizabeth Allyn3

Affiliation:

1. Johns Hopkins University, USA. caggazz1@jhu.edu

2. Johns Hopkins University, USA. noa@jhu.edu

3. Université du Québec à Montréal, Canada. smith.elizabeth_allyn@uqam.ca

Abstract

Abstract Authorship verification is the task of determining if two distinct writing samples share the same author and is typically concerned with the attribution of written text. In this paper, we explore the attribution of transcribed speech, which poses novel challenges. The main challenge is that many stylistic features, such as punctuation and capitalization, are not informative in this setting. On the other hand, transcribed speech exhibits other patterns, such as filler words and backchannels (e.g., um, uh-huh), which may be characteristic of different speakers. We propose a new benchmark for speaker attribution focused on human-transcribed conversational speech transcripts. To limit spurious associations of speakers with topic, we employ both conversation prompts and speakers participating in the same conversation to construct verification trials of varying difficulties. We establish the state of the art on this new benchmark by comparing a suite of neural and non-neural baselines, finding that although written text attribution models achieve surprisingly good performance in certain settings, they perform markedly worse as conversational topic is increasingly controlled. We present analyses of the impact of transcription style on performance as well as the ability of fine-tuning on speech transcripts to improve performance.1

Publisher

MIT Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3