Context-Aware Machine Translation with Source Coreference Explanation

Author:

Vu Huy Hien1,Kamigaito Hidetaka2,Watanabe Taro3

Affiliation:

1. Nara Institute of Science and Technology, Japan. vu.huy_hien.va9@is.naist.jp

2. Nara Institute of Science and Technology, Japan. kamigaito.h@is.naist.jp

3. Nara Institute of Science and Technology, Japan. taro@is.naist.jp

Abstract

Abstract Despite significant improvements in enhancing the quality of translation, context-aware machine translation (MT) models underperform in many cases. One of the main reasons is that they fail to utilize the correct features from context when the context is too long or their models are overly complex. This can lead to the explain-away effect, wherein the models only consider features easier to explain predictions, resulting in inaccurate translations. To address this issue, we propose a model that explains the decisions made for translation by predicting coreference features in the input. We construct a model for input coreference by exploiting contextual features from both the input and translation output representations on top of an existing MT model. We evaluate and analyze our method in the WMT document-level translation task of English-German dataset, the English-Russian dataset, and the multilingual TED talk dataset, demonstrating an improvement of over 1.0 BLEU score when compared with other context-aware models.

Publisher

MIT Press

Reference61 articles.

1. Evaluating automated and manual acquisition of anaphora resolution strategies;Aone,1995

2. Neural machine translation by jointly learning to align and translate;Bahdanau,2015

3. Target-side augmentation for document-level machine translation;Bao,2023

4. G-transformer for document-level machine translation;Bao,2021

5. A statistical approach to machine translation;Brown;Computational Linguistics,1990

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3