Augmenting Transformers with KNN-Based Composite Memory for Dialog

Author:

Fan Angela1,Gardent Claire2,Braud Chloé3,Bordes Antoine4

Affiliation:

1. Facebook AI Research, Université de Lorraine LORIA.

2. CNRS/LORIA.

3. CNRS/IRIT.

4. Facebook AI Research.

Abstract

Various machine learning tasks can benefit from access to external information of different modalities, such as text and images. Recent work has focused on learning architectures with large memories capable of storing this knowledge. We propose augmenting generative Transformer neural networks with KNN-based Information Fetching (KIF) modules. Each KIF module learns a read operation to access fixed external knowledge. We apply these modules to generative dialog modeling, a challenging task where information must be flexibly retrieved and incorporated to maintain the topic and flow of conversation. We demonstrate the effectiveness of our approach by identifying relevant knowledge required for knowledgeable but engaging dialog from Wikipedia, images, and human-written dialog utterances, and show that leveraging this retrieved information improves model performance, measured by automatic and human evaluation.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rethinking AI code generation: a one-shot correction approach based on user feedback;Automated Software Engineering;2024-07-12

2. Datastore Distillation for Nearest Neighbor Machine Translation;IEEE/ACM Transactions on Audio, Speech, and Language Processing;2024

3. Learning to Select External Knowledge With Multi-Scale Negative Sampling;IEEE/ACM Transactions on Audio, Speech, and Language Processing;2024

4. KINet: Incorporating Relevant Facts Into Knowledge-Grounded Dialog Generation;IEEE/ACM Transactions on Audio, Speech, and Language Processing;2023

5. Unstructured Text Enhanced Open-Domain Dialogue System: A Systematic Survey;ACM Transactions on Information Systems;2022-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3