Dorsal Striatal–midbrain Connectivity in Humans Predicts How Reinforcements Are Used to Guide Decisions

Author:

Kahnt Thorsten12,Park Soyoung Q1,Cohen Michael X3,Beck Anne1,Heinz Andreas1,Wrase Jana1

Affiliation:

1. 1Charité—Universitätsmedizin Berlin (Charité Campus Mitte), Germany

2. 2Bernstein Center for Computational Neuroscience Berlin, Germany

3. 3University of Arizona, Tucson

Abstract

Abstract It has been suggested that the target areas of dopaminergic midbrain neurons, the dorsal (DS) and ventral striatum (VS), are differently involved in reinforcement learning especially as actor and critic. Whereas the critic learns to predict rewards, the actor maintains action values to guide future decisions. The different midbrain connections to the DS and the VS seem to play a critical role in this functional distinction. Here, subjects performed a dynamic, reward-based decision-making task during fMRI acquisition. A computational model of reinforcement learning was used to estimate the different effects of positive and negative reinforcements on future decisions for each subject individually. We found that activity in both the DS and the VS correlated with reward prediction errors. Using functional connectivity, we show that the DS and the VS are differentially connected to different midbrain regions (possibly corresponding to the substantia nigra [SN] and the ventral tegmental area [VTA], respectively). However, only functional connectivity between the DS and the putative SN predicted the impact of different reinforcement types on future behavior. These results suggest that connections between the putative SN and the DS are critical for modulating action values in the DS according to both positive and negative reinforcements to guide future decision making.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3