The Functional Effect of Transcranial Magnetic Stimulation: Signal Suppression or Neural Noise Generation?

Author:

Harris Justin A.1,Clifford Colin W. G.1,Miniussi Carlo23

Affiliation:

1. 1The University of Sydney, Australia

2. 2University of Brescia, Brescia, Italy

3. 3Cognitive Neuroscience, IRCCS, Brescia, Italy

Abstract

Abstract Transcranial magnetic stimulation (TMS) is a popular tool for mapping perceptual and cognitive processes in the human brain. It uses a magnetic field to stimulate the brain, modifying ongoing activity in neural tissue under the stimulating coil, producing an effect that has been likened to a “virtual lesion.” However, research into the functional basis of this effect, essential for the interpretation of findings, lags behind its application. Acutely, TMS may disable neuronal function, thereby interrupting ongoing neural processes. Alternatively, the effects of TMS have been attributed to an injection of “neural noise,” consistent with its immediate and effectively random depolarization of neurons. Here we apply an added-noise paradigm to test these alternatives. We delivered TMS to the visual cortex and measured its effect on a simple visual discrimination task, while concurrently manipulating the level of image noise in the visual stimulus itself. TMS increased thresholds overall; and increasing the amount of image noise systematically increased discrimination thresholds. However, these two effects were not independent. Rather, TMS interacted multiplicatively with the image noise, consistent with a reduction in the strength of the visual signal. Indeed, in this paradigm, there was no evidence that TMS independently added noise to the visual process. Thus, our findings indicate that the “virtual lesion” produced by TMS can take the form of a loss of signal strength which may reflect a momentary interruption to ongoing neural processing.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3