A Neural Circuit for Robust Time-to-Contact Estimation Based on Primate MST

Author:

Browning N. Andrew1

Affiliation:

1. Center for Computational Neuroscience and Neural Technology, Boston University, Boston, MA 02215

Abstract

Time-to-contact (TTC) estimation is beneficial for visual navigation. It can be estimated from an image projection, either in a camera or on the retina, by looking at the rate of expansion of an object. When expansion rate (E) is properly defined, TTC = 1/E. Primate dorsal MST cells have receptive field structures suited to the estimation of expansion and TTC. However, the role of MST cells in TTC estimation has been discounted because of large receptive fields, the fact that neither they nor preceding brain areas appear to decompose the motion field to estimate divergence, and a lack of experimental data. This letter demonstrates mathematically that template models of dorsal MST cells can be constructed such that the output of the template match provides an accurate and robust estimate of TTC. The template match extracts the relevant components of the motion field and scales them such that the output of each component of the template match is an estimate of expansion. It then combines these component estimates to provide a mean estimate of expansion across the object. The output of model MST provides a direct measure of TTC. The ViSTARS model of primate visual navigation was updated to incorporate the modified templates. In ViSTARS and in primates, speed is represented as a population code in V1 and MT. A population code for speed complicates TTC estimation from a template match. Results presented in this letter demonstrate that the updated template model of MST accurately codes TTC across a population of model MST cells. We conclude that the updated template model of dorsal MST simultaneously and accurately codes TTC and heading regardless of receptive field size, object size, or motion representation. It is possible that a subpopulation of MST cells in primates represents expansion in this way.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3