Affiliation:
1. Telematics Engineering Department, Polytechnical University of Catalonia, Barcelona 08034, Spain
Abstract
A sizable amount of research has been done to improve the mechanisms for knowledge extraction such as machine learning classification or regression. Quite unintuitively, the no free lunch (NFL) theorem states that all optimization problem strategies perform equally well when averaged over all possible problems. This fact seems to clash with the effort put forth toward better algorithms. This letter explores empirically the effect of the NFL theorem on some popular machine learning classification techniques over real-world data sets.
Subject
Cognitive Neuroscience,Arts and Humanities (miscellaneous)
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献