Kernelized Elastic Net Regularization: Generalization Bounds, and Sparse Recovery

Author:

Feng Yunlong1,Lv Shao-Gao2,Hang Hanyuan1,Suykens Johan A. K.1

Affiliation:

1. Department of Electrical Engineering, ESAT-STADIUS, KU Leuven 3000, Belgium

2. Statistics School, Southwestern University of Finance and Economics, ChengDu 611130, China

Abstract

Kernelized elastic net regularization (KENReg) is a kernelization of the well-known elastic net regularization (Zou & Hastie, 2005 ). The kernel in KENReg is not required to be a Mercer kernel since it learns from a kernelized dictionary in the coefficient space. Feng, Yang, Zhao, Lv, and Suykens ( 2014 ) showed that KENReg has some nice properties including stability, sparseness, and generalization. In this letter, we continue our study on KENReg by conducting a refined learning theory analysis. This letter makes the following three main contributions. First, we present refined error analysis on the generalization performance of KENReg. The main difficulty of analyzing the generalization error of KENReg lies in characterizing the population version of its empirical target function. We overcome this by introducing a weighted Banach space associated with the elastic net regularization. We are then able to conduct elaborated learning theory analysis and obtain fast convergence rates under proper complexity and regularity assumptions. Second, we study the sparse recovery problem in KENReg with fixed design and show that the kernelization may improve the sparse recovery ability compared to the classical elastic net regularization. Finally, we discuss the interplay among different properties of KENReg that include sparseness, stability, and generalization. We show that the stability of KENReg leads to generalization, and its sparseness confidence can be derived from generalization. Moreover, KENReg is stable and can be simultaneously sparse, which makes it attractive theoretically and practically.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3