Refinements of Universal Approximation Results for Deep Belief Networks and Restricted Boltzmann Machines

Author:

Montufar Guido1,Ay Nihat2

Affiliation:

1. Max Planck Institute for Mathematics in the Sciences, D-04103 Leipzig, Germany

2. Max Planck Institute for Mathematics in the Sciences, D-04103 Leipzig, Germany, and Santa Fe Institute, Santa Fe, NM 87501, U.S.A.

Abstract

We improve recently published results about resources of restricted Boltzmann machines (RBM) and deep belief networks (DBN) required to make them universal approximators. We show that any distribution [Formula: see text] on the set [Formula: see text] of binary vectors of length [Formula: see text] can be arbitrarily well approximated by an RBM with [Formula: see text] hidden units, where [Formula: see text] is the minimal number of pairs of binary vectors differing in only one entry such that their union contains the support set of [Formula: see text]. In important cases this number is half the cardinality of the support set of [Formula: see text] (given in Le Roux & Bengio, 2008 ). We construct a DBN with [Formula: see text], hidden layers of width [Formula: see text] that is capable of approximating any distribution on [Formula: see text] arbitrarily well. This confirms a conjecture presented in Le Roux and Bengio ( 2010 ).

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3