Olfactory Recognition Based on EEG Gamma-Band Activity

Author:

Aydemir Onder1

Affiliation:

1. Karadeniz Technical University, Department of Electrical and Electronics Engineering, 61080, Trabzon, Turkey

Abstract

There are various kinds of brain monitoring techniques, including local field potential, near-infrared spectroscopy, magnetic resonance imaging (MRI), positron emission tomography, functional MRI, electroencephalography (EEG), and magnetoencephalography. Among those techniques, EEG is the most widely used one due to its portability, low setup cost, and noninvasiveness. Apart from other advantages, EEG signals also help to evaluate the ability of the smelling organ. In such studies, EEG signals, which are recorded during smelling, are analyzed to determine the subject lacks any smelling ability or to measure the response of the brain. The main idea of this study is to show the emotional difference in EEG signals during perception of valerian, lotus flower, cheese, and rosewater odors by the EEG gamma wave. The proposed method was applied to the EEG signals, which were taken from five healthy subjects in the conditions of eyes open and eyes closed at the Swiss Federal Institute of Technology. In order to represent the signals, we extracted features from the gamma band of the EEG trials by continuous wavelet transform with the selection of Morlet as a wavelet function. Then the [Formula: see text]-nearest neighbor algorithm was implemented as the classifier for recognizing the EEG trials as valerian, lotus flower, cheese, and rosewater. We achieved an average classification accuracy rate of 87.50% with the 4.3 standard deviation value for the subjects in eyes-open condition and an average classification accuracy rate of 94.12% with the 2.9 standard deviation value for the subjects in eyes-closed condition. The results prove that the proposed continuous wavelet transform–based feature extraction method has great potential to classify the EEG signals recorded during smelling of the present odors. It has been also established that gamma-band activity of the brain is highly associated with olfaction.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using chemosensory-induced EEG signals to identify patients with de novo Parkinson’s disease;Biomedical Signal Processing and Control;2024-01

2. The increasing instance of negative emotion reduce the performance of emotion recognition;Frontiers in Human Neuroscience;2023-10-13

3. Tempo-Spectral EEG Biomarkers for Odour Identification;2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2023-07-24

4. Alzheimer's Disease Diagnosis Using Olfactory Stimulus Evoked Electroencephalography Signals;2023 31st Signal Processing and Communications Applications Conference (SIU);2023-07-05

5. Brain waves spectral analysis of human responses to odorous and non-odorous substances: a preliminary study;The Journal of Laryngology & Otology;2023-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3