Suitability of V1 Energy Models for Object Classification

Author:

Bergstra James1,Bengio Yoshua1,Louradour Jérôme1

Affiliation:

1. Département d'Informatique, Université de Montréal, Montréal, Québec H3T IJ4, Canada

Abstract

Simulations of cortical computation have often focused on networks built from simplified neuron models similar to rate models hypothesized for V1 simple cells. However, physiological research has revealed that even V1 simple cells have surprising complexity. Our computational simulations explore the effect of this complexity on the visual system's ability to solve simple tasks, such as the categorization of shapes and digits, after learning from a limited number of examples. We use recently proposed high-throughput methodology to explore what axes of modeling complexity are useful in these categorization tasks. We find that complex cell rate models learn to categorize objects better than simple cell models, and without incurring extra computational expense. We find that the squaring of linear filter responses leads to better performance. We find that several other components of physiologically derived models do not yield better performance.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Few-shot detection of surface roughness of workpieces processed by different machining techniques;Measurement Science and Technology;2024-01-18

2. The Spike-and-Slab RBM and Extensions to Discrete and Sparse Data Distributions;IEEE Transactions on Pattern Analysis and Machine Intelligence;2014-09

3. Learned-Norm Pooling for Deep Feedforward and Recurrent Neural Networks;Machine Learning and Knowledge Discovery in Databases;2014

4. Learning Temporal Coherent Features through Life-Time Sparsity;Neural Information Processing;2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3