Graph Transduction as a Noncooperative Game

Author:

Erdem Aykut1,Pelillo Marcello2

Affiliation:

1. Faculty of Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey

2. DAIS, Università Ca’ Foscari Venezia, 30172 Venezia Mestre, Italy

Abstract

Graph transduction is a popular class of semisupervised learning techniques that aims to estimate a classification function defined over a graph of labeled and unlabeled data points. The general idea is to propagate the provided label information to unlabeled nodes in a consistent way. In contrast to the traditional view, in which the process of label propagation is defined as a graph Laplacian regularization, this article proposes a radically different perspective, based on game-theoretic notions. Within the proposed framework, the transduction problem is formulated in terms of a noncooperative multiplayer game whereby equilibria correspond to consistent labelings of the data. An attractive feature of this formulation is that it is inherently a multiclass approach and imposes no constraint whatsoever on the structure of the pairwise similarity matrix, being able to naturally deal with asymmetric and negative similarities alike. Experiments on a number of real-world problems demonstrate that the proposed approach performs well compared with state-of-the-art algorithms, and it can deal effectively with various types of similarity relations.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3