Insights from a Simple Expression for Linear Fisher Information in a Recurrently Connected Population of Spiking Neurons

Author:

Beck Jeffrey1,Bejjanki Vikranth R.2,Pouget Alexandre2

Affiliation:

1. Gatsby Computational Neuroscience Unit, University College London, London, WC1N 3AR, U.K.

2. Department of Brain and Cognitive Science, University of Rochester, Rochester, NY 14627, U.S.A.

Abstract

A simple expression for a lower bound of Fisher information is derived for a network of recurrently connected spiking neurons that have been driven to a noise-perturbed steady state. We call this lower bound linear Fisher information, as it corresponds to the Fisher information that can be recovered by a locally optimal linear estimator. Unlike recent similar calculations, the approach used here includes the effects of nonlinear gain functions and correlated input noise and yields a surprisingly simple and intuitive expression that offers substantial insight into the sources of information degradation across successive layers of a neural network. Here, this expression is used to (1) compute the optimal (i.e., information-maximizing) firing rate of a neuron, (2) demonstrate why sharpening tuning curves by either thresholding or the action of recurrent connectivity is generally a bad idea, (3) show how a single cortical expansion is sufficient to instantiate a redundant population code that can propagate across multiple cortical layers with minimal information loss, and (4) show that optimal recurrent connectivity strongly depends on the covariance structure of the inputs to the network.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3