Affiliation:
1. Institut de Robòtica i Informàtica Industrial (CSIC-UPC), 08028 Barcelona, Spain
2. Bernstein Center for Computational Neuroscience, 37077 Göttingen, Germany
Abstract
In the online version of the EM algorithm introduced by Sato and Ishii ( 2000 ), a time-dependent discount factor is introduced for forgetting the effect of the old estimated values obtained with an earlier, inaccurate estimator. In their approach, forgetting is uniformly applied to the estimators of each mixture component depending exclusively on time, irrespective of the weight attributed to each unit for the observed sample. This causes an excessive forgetting in the less frequently sampled regions. To address this problem, we propose a modification of the algorithm that involves a weight-dependent forgetting, different for each mixture component, in which old observations are forgotten according to the actual weight of the new samples used to replace older values. A comparison of the time-dependent versus the weight-dependent approach shows that the latter improves the accuracy of the approximation and exhibits much greater stability.
Subject
Cognitive Neuroscience,Arts and Humanities (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献