Continuous Online Sequence Learning with an Unsupervised Neural Network Model

Author:

Cui Yuwei1,Ahmad Subutai1,Hawkins Jeff1

Affiliation:

1. Numenta, Inc. Redwood City, CA 94063, U.S.A.

Abstract

The ability to recognize and predict temporal sequences of sensory inputs is vital for survival in natural environments. Based on many known properties of cortical neurons, hierarchical temporal memory (HTM) sequence memory recently has been proposed as a theoretical framework for sequence learning in the cortex. In this letter, we analyze properties of HTM sequence memory and apply it to sequence learning and prediction problems with streaming data. We show the model is able to continuously learn a large number of variable order temporal sequences using an unsupervised Hebbian-like learning rule. The sparse temporal codes formed by the model can robustly handle branching temporal sequences by maintaining multiple predictions until there is sufficient disambiguating evidence. We compare the HTM sequence memory with other sequence learning algorithms, including statistical methods—autoregressive integrated moving average; feedforward neural networks—time delay neural network and online sequential extreme learning machine; and recurrent neural networks—long short-term memory and echo-state networks on sequence prediction problems with both artificial and real-world data. The HTM model achieves comparable accuracy to other state-of-the-art algorithms. The model also exhibits properties that are critical for sequence learning, including continuous online learning, the ability to handle multiple predictions and branching sequences with high-order statistics, robustness to sensor noise and fault tolerance, and good performance without task-specific hyperparameter tuning. Therefore, the HTM sequence memory not only advances our understanding of how the brain may solve the sequence learning problem but is also applicable to real-world sequence learning problems from continuous data streams.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 145 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hebbian spatial encoder with adaptive sparse connectivity;Cognitive Systems Research;2024-12

2. Extracting Geoscientific Dataset Names from the Literature Based on the Hierarchical Temporal Memory Model;ISPRS International Journal of Geo-Information;2024-07-21

3. Cognitive Modeling Based on Perceiving-Acting Cycle in Unilateral Spatial Neglect;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

4. A Novel Memristors Based Echo State Network Model Inspired by the Brain’s Uni-hemispheric Slow-Wave Sleep Characteristics;Cognitive Computation;2024-06-10

5. Brain-Inspired Real Time Anomaly Detection System for Mobile Networks;2024 IEEE International Conference on Communications Workshops (ICC Workshops);2024-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3