Variational Latent Gaussian Process for Recovering Single-Trial Dynamics from Population Spike Trains

Author:

Zhao Yuan1,Park Il Memming2

Affiliation:

1. Department of Neurobiology and Behavior and Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, U.S.A.

2. Department of Neurobiology and Behavior; Department of Applied Mathematics and Statistics; and Institute for Advanced Computational Sciences, Stony Brook University, Stony Brook, NY, 11794, U.S.A.

Abstract

When governed by underlying low-dimensional dynamics, the interdependence of simultaneously recorded populations of neurons can be explained by a small number of shared factors, or a low-dimensional trajectory. Recovering these latent trajectories, particularly from single-trial population recordings, may help us understand the dynamics that drive neural computation. However, due to the biophysical constraints and noise in the spike trains, inferring trajectories from data is a challenging statistical problem in general. Here, we propose a practical and efficient inference method, the variational latent gaussian process (vLGP). The vLGP combines a generative model with a history-dependent point process observation, together with a smoothness prior on the latent trajectories. The vLGP improves on earlier methods for recovering latent trajectories, which assume either observation models inappropriate for point processes or linear dynamics. We compare and validate vLGP on both simulated data sets and population recordings from the primary visual cortex. In the V1 data set, we find that vLGP achieves substantially higher performance than previous methods for predicting omitted spike trains, as well as capturing both the toroidal topology of visual stimuli space and the noise correlation. These results show that vLGP is a robust method with the potential to reveal hidden neural dynamics from large-scale neural recordings.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3