Affiliation:
1. ATR Computational Neuroscience Laboratories, Kyoto 619-0288, Japan
2. National Institute of Information and Communications Technology and ATR Computational Neuroscience Laboratories, Kyoto 619-0288, Japan
Abstract
Neural encoding and decoding provide perspectives for understanding neural representations of sensory inputs. Recent functional magnetic resonance imaging (fMRI) studies have succeeded in building prediction models for encoding and decoding numerous stimuli by representing a complex stimulus as a combination of simple elements. While arbitrary visual images were reconstructed using a modular model that combined the outputs of decoder modules for multiscale local image bases (elements), the shapes of the image bases were heuristically determined. In this work, we propose a method to establish mappings between the stimulus and the brain by automatically extracting modules from measured data. We develop a model based on Bayesian canonical correlation analysis, in which each module is modeled by a latent variable that relates a set of pixels in a visual image to a set of voxels in an fMRI activity pattern. The estimated mapping from a latent variable to pixels can be regarded as an image basis. We show that the model estimates a modular representation with spatially localized multiscale image bases. Further, using the estimated mappings, we derive encoding and decoding models that produce accurate predictions for brain activity and stimulus images. Our approach thus provides a novel means of revealing neural representations of stimuli by automatically extracting modules, which can be used to generate effective prediction models for encoding and decoding.
Subject
Cognitive Neuroscience,Arts and Humanities (miscellaneous)
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献